Reciprocal logarithmic time-dependence for a simple one-dimensional random walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L1055
(http://iopscience.iop.org/0305-4470/25/17/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:57

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Reciprocal logarithmic time-dependence for a simple one-dimensional random walk

V I Kabanovich
Institute for System Analysis, Zelenograd 802-113, Moscow 103527, Russia

Received 22 April 1992

Abstract

It is shown for a simple one-dimensional random walk that the probability of the existence of a point visited exactly once, with both its neighbours visited at least once, has a time-dependence of $\sim 2 / \ln t$ as $t \rightarrow \infty$.

In this letter I present the following property of a simple one-dimensional random walk with independent increments [1,2]

$$
\begin{equation*}
f(t)=P\left(\min _{L_{t}<m<R_{t}} N(t, m)=1\right) \sim \frac{2}{\ln t} \quad t \rightarrow \infty \tag{1}
\end{equation*}
$$

where $P(\ldots)$ denotes 'the probability of \ldots, L_{t} and R_{t} are respectively the left and right boundaries of the set of visited points

$$
\begin{equation*}
L_{t}=\min _{0 \leqslant \tau \leqslant 1} S_{\tau} \quad R_{t}=\max _{0 \leqslant \tau \leqslant 1} S_{\tau} \tag{2}
\end{equation*}
$$

$N(t, m)$ is the number of visits to a point m

$$
\begin{equation*}
N(t, m)=\left\|\left\{\tau: 0 \leqslant \tau \leqslant t, S_{\tau}=m\right\}\right\| \tag{3}
\end{equation*}
$$

and a sequence of random quantities S_{t} is such that

$$
\begin{equation*}
S_{0}=0 \quad S_{t}=S_{t-1}+X_{t} \quad t=1,2, \ldots \tag{4}
\end{equation*}
$$

where independent random quantities X_{t} have the distribution

$$
\begin{equation*}
P\left(X_{t}=1\right)=P\left(X_{t}=-1\right)=\frac{1}{2} . \quad t=1,2, \ldots \tag{5}
\end{equation*}
$$

To prove (1) we consider the functions of integer $t, m, n \geqslant 0$:

$$
\begin{align*}
f_{2}(t ; m, n)= & P\left(m=R_{t}-S_{t}, n=S_{t}-M_{t}, D_{t} \neq \varnothing\right) \quad m \geqslant 0, n \geqslant 1, t \geqslant 0 \tag{6a}\\
& f_{2}(t ; m, 0)=0 \quad m \geqslant 0, t \geqslant 0 \tag{6b}\\
& f_{1}(t ; m)=P\left(m=R_{t}-S_{t}, D_{t}=\varnothing\right) \quad m \geqslant 1, t \geqslant 0 \tag{7a}\\
& f_{1}(t ; 0)=P\left(R_{t}=S_{t}, D_{t}=\varnothing, \nu\left(t, R_{t}\right)>1\right) \quad t \geqslant 1, f_{1}(0 ; 0)=1 \tag{7b}\\
& f_{0}(t)=P\left(R_{t}=S_{t}, D_{t}=\varnothing, \nu\left(t, R_{t}\right)=1\right) \quad t \geqslant 1, f_{0}(0)=0 \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
D_{1}=\left\{m: 0<m<R_{t}, \nu(t, m)=1\right\} \tag{9}
\end{equation*}
$$

and in the case of $D_{1} \neq \varnothing$

$$
\begin{equation*}
M_{t}=\inf \left(D_{t}\right) . \tag{10}
\end{equation*}
$$

Considering one step and making use of the distribution (5), we have the following equations:

$$
\begin{align*}
& 2 f_{2}(t ; m, n)=f_{2}(t-1 ; m+1, n-1)+f_{2}(t-1 ; m-1, n+1) \\
& m \geqslant 1, n \geqslant 1, t \geqslant 1 \tag{11a}\\
& f_{2}(t ; m, 0)=0 \quad m \geqslant 0, t \geqslant 0 \tag{11b}\\
& 2 f_{2}(t ; 0, n)=f_{2}(t-1 ; 0, n-1)+f_{2}(t-1 ; 1, n-1) \quad n \geqslant 2, t \geqslant 1 \tag{11c}\\
& 2 f_{2}(t ; 0,1)=f_{0}(t-1) \quad t \geqslant 1 \tag{11d}\\
& f_{2}(0 ; m, n)=0 \quad m \geqslant 0, n \geqslant 0 \tag{11e}\\
& 2 f_{1}(t ; m)=f_{1}(t-1 ; m+1)+f_{1}(t-1 ; m-1)+f_{2}(t-1 ; m-1,1) \\
& m \geqslant 2, t \geqslant 1 \tag{12a}\\
& 2 f_{1}(t ; 1)=f_{1}(t-1 ; 2)+f_{1}(t-1 ; 0)+f_{2}(t-1 ; 0,1)+f_{0}(t-1) \quad t \geqslant 1 \tag{12b}\\
& 2 f_{1}(t ; 0)=f_{1}(t-1 ; 1) \quad t \geqslant 1 \tag{12c}\\
& f_{1}(0 ; m)=0 \quad m \geqslant 1 \tag{12d}\\
& f_{1}(0 ; 0)=1 \tag{12e}\\
& 2 f_{0}(t)=f_{1}(t-1 ; 0) \quad t \geqslant 1 \tag{13a}\\
& f_{0}(0)=0 . \tag{13b}
\end{align*}
$$

By definition (6), we find

$$
\begin{equation*}
P\left(D_{t} \neq \varnothing\right)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} f_{2}(t ; m, n) \quad t \geqslant 0 . \tag{14}
\end{equation*}
$$

From the symmetry of a simple random walk it follows that

$$
\begin{equation*}
P\left(D_{1}^{\prime} \neq \varnothing\right)=P\left(D_{1} \neq \varnothing\right) \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{t}^{\prime}=\left\{m: L_{t}<m<0, \nu(t, m)=1\right\} \tag{16}
\end{equation*}
$$

It is obvious that either $D_{t}=\varnothing$ or $D_{t}^{\prime}=\varnothing$, hence

$$
\begin{equation*}
f(t)=P\left(D_{1} \neq \varnothing \text { or } D_{t}^{\prime} \neq \varnothing\right)=2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} f_{2}(t ; m, n) \quad t \geqslant 0 . \tag{17}
\end{equation*}
$$

The system of equations (11), (12), (13), (17) allows us to calculate $f(t)$ respectively. Now we consider the generating functions:

$$
\begin{align*}
& F_{2}(z ; m, n)=\sum_{t=0}^{\infty} z^{\prime} f_{2}(t ; m, n) \tag{18a}\\
& F_{1}(z ; m)=\sum_{t=0}^{\infty} z^{t} f_{1}(t ; m) \tag{18b}\\
& F_{0}(z)=\sum_{t=0}^{\infty} z^{\prime} f_{0}(t) \tag{18c}\\
& F(z)=\sum_{t=0}^{\infty} z^{t} f(t) \tag{18d}
\end{align*}
$$

where $|z|<1$.

Summing equations (11), (12), (13), (17) with z^{\prime}, we obtain

$$
\begin{array}{ll}
(2 / z) F_{2}(z ; m, n)=F_{2}(z ; m+1, n-1)+F_{2}(z ; m-1, n+1) \\
& m \geqslant 1, n \geqslant 1 \\
F_{2}(z ; m, 0)=0 \quad m \geqslant 0 & (19 a) \\
(2 / z) F_{2}(z ; 0, n)=F_{2}(z ; 0, n-1)+F_{2}(z ; 1, n-1) & (19 b) \\
(2 / z) F_{2}(z ; 0,1)=F_{0}(z) & (19 c) \\
(2 / z) F_{1}(z ; m)=F_{1}(z ; m+1)+F_{1}(z ; m-1)+F_{2}(z ; m-1,1) & \begin{array}{l}
m \geqslant 2 \\
\\
(2 / z) F_{1}(z ; 1)=F_{1}(z ; 2)+F_{1}(z ; 0)+F_{2}(z ; 0,1)+F_{0}(z) \\
(2 / z) F_{1}(z ; 0)=F_{1}(z ; 1)+2 / z
\end{array} \\
\lim _{m \rightarrow \infty} F_{1}(z ; \dot{m})^{-}=0 & (20 b) \\
(2 / z) F_{0}(z)=F_{1}(z ; 0) \\
F(z)=2 \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} F_{2}(z ; m, n) .
\end{array}
$$

Condition (20d) which is necessary to choose the only solution follows from the simple property $f_{1}(t ; m)=0$ at $t<m$.

The system of equations (19)-(21) can be solved by standard methods of the finite difference calculus [3]. We show the main points of solution. First, we write the general solution of equation (19a) in the form

$$
\begin{equation*}
\tilde{F}_{2}(z ; m, n)=C_{1}(z ; m+n) x^{n}+C_{2}(z ; m+n) x^{-n} \tag{23}
\end{equation*}
$$

where $C_{1}(z ; m), C_{2}(z ; m)$ are arbitrary functions and

$$
\begin{equation*}
x=\frac{1}{z}\left(1+\sqrt{1-z^{2}}\right) \tag{24}
\end{equation*}
$$

Then condition (19b) gives

$$
\begin{equation*}
C_{1}(z ; m)=-C_{2}(z ; m) \quad m \geqslant 0 \tag{25}
\end{equation*}
$$

Further, equation (19c) transforms into

$$
\begin{equation*}
C_{1}(z ; n)=C_{1}(z ; n-1) \frac{u(x ; n-1)}{u(x ; n+1)} \quad n \geqslant 2 \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
u(x ; n)=\sinh [n \ln (x)] \tag{27}
\end{equation*}
$$

and condition (19d) lets us find

$$
\begin{equation*}
C_{1}(z ; 1)=\frac{F_{0}(z)}{2 u(x ; 2)} \tag{28}
\end{equation*}
$$

Thus, we can express the function $f_{2}(z ; m, n)$ in terms of $F_{0}(z)$:

$$
\begin{equation*}
F_{2}(z ; m, n)=\frac{u(x ; 1) u(x ; n)}{u(x ; m+n+1) u(x ; m+n)} F_{0}(z) \tag{29}
\end{equation*}
$$

To find the general solution of non-homogeneous equation (20a) we use the Green function

$$
\begin{equation*}
G(z ; k ; m)=-\frac{|u(x ; m-k)|}{2 u(x ; 1)} \tag{30}
\end{equation*}
$$

which is a solution of the equation

$$
\begin{equation*}
(2 / z) G(z ; k ; m)=G(z ; k ; m+1)+G(z ; k ; m-1)+\delta_{m, k} \tag{31}
\end{equation*}
$$

and adding the general solution of homogeneous equation, we have

$$
\begin{equation*}
\tilde{F}_{1}(z ; m)=\sum_{k=2}^{\infty} G(z ; k ; m) F_{2}(z ; k-1,1)+C_{3}(z) x^{m}+C_{4}(z) x^{-m} \tag{32}
\end{equation*}
$$

where $m \geqslant 1$ and $C_{3}(z), C_{4}(z)$ are arbitrary functions.
Finally, making use of $(20 b)-(20 d),(21)$ one can find that

$$
\begin{align*}
& F_{1}(z ; m)=\frac{2}{z} \frac{x^{-m}}{x-1}-F_{0}(z) \sum_{k=m}^{\infty} \frac{u(x ; k-m) u(x ; 1)}{u(x ; k+1) u(x ; k)} \quad m \geqslant 1 \tag{33a}\\
& F_{1}(z ; 0)=\frac{2}{z} F_{0}(z) \tag{33b}\\
& F_{0}(z)=\frac{2}{x-1}\left(2+z \sum_{k=1}^{\infty} \frac{u(x ; 1)}{u(x ; k)}\right)^{-1} . \tag{33c}
\end{align*}
$$

Taking the sum in equation (22), we obtain

$$
\begin{equation*}
F(z)=\frac{1}{x-1} F_{0}(z)=\frac{2}{(x-1)^{2}}\left(2+z \sum_{k=1}^{\infty} \frac{u(x ; 1)}{u(x ; k)}\right)^{-1} \tag{34}
\end{equation*}
$$

Now we consider asymptotics at small positive $\varepsilon=1-z, \varepsilon \rightarrow 0$:

$$
\begin{align*}
&-1+x \sim \ln (x) \sim \sqrt{2 \varepsilon} \tag{35}\\
& \sum_{k=1}^{\infty} \frac{u(x ; 1)}{u(x ; k)} \sim \int_{1}^{\infty} \frac{\sinh (\sqrt{2 \varepsilon})}{\sinh (k \sqrt{2 \varepsilon})} \mathrm{d} k=-\frac{\sinh (\sqrt{2 \varepsilon})}{\sqrt{2 \varepsilon}} \ln \left[\tanh \left(\frac{\sqrt{2 \varepsilon}}{2}\right)\right] \sim \frac{1}{2} \ln \varepsilon \tag{36}\\
& F(1-\varepsilon) \sim-\frac{2}{\varepsilon \ln \varepsilon} . \tag{37}
\end{align*}
$$

Taking the asymptotic of $f(t)$ at $t \rightarrow \infty$ in the form

$$
\begin{equation*}
f(t) \sim \frac{\varphi}{t^{\alpha}(\ln t)^{\beta}} \tag{38}
\end{equation*}
$$

we have at $\alpha<1$

$$
\begin{equation*}
F(1-\varepsilon) \sim \varphi \sum_{t=2}^{\infty} \frac{(1-\varepsilon)^{t}}{t^{\alpha}(\ln t)^{\beta}} \sim \varphi \int_{1}^{\infty} \frac{\mathrm{e}^{-\varepsilon t} \mathrm{~d} t}{t^{\alpha}(\ln t)^{\beta}} \sim \frac{\varphi \Gamma(1-\alpha)}{\varepsilon^{1-\alpha}(-\ln \varepsilon)^{\beta}} \tag{39}
\end{equation*}
$$

At last, comparing two asymptotics (37) and (39), we find $\varphi=2, \alpha=0, \beta=1$.

References

[1] Spitzer F 1964 Principles of Random Walk (Princeton, NJ: Van Nostrand)
[2] Feller W 1966 An Introduction to Probability Theory and its Applications vol 2 (New York: Wiley)
[3] Gel'fond A O 1967 Finite Difference Calculus (Moscow: Nauka) (in Russian)

