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LE’lTER TO THE EDITOR 

Reciprocal logarithmic time-dependence for a simple 
one-dimensional random walk 

V I Kabanovich 
Institute for System Analysis, Zelenograd 802-113, Moscow 103527, Russia 

Received 22 April 1992 

Abstnd. It is shown for a simple one-dimensional random walk that the probability of 
the existence of a point visited exactly once, with both its neighbours visited at least once, 
has a time-dependence of -21111 I as 1-m. 

In this letter I present the following property of a simple one-dimensional random 
walk with independent increments [l, 21 

min N ( f , m ) = l  f + W  
L, < m < R, 

where P(. . .) denotes ‘the probability o f . .  .’, L, and R, are respectively the left and 
right boundaries of the set of visited points 

L, = min S, R,= max S, (2) 
O==,<, O S 7 S l  

N( f, m )  is the number of visits to a point m 
N ( f ,  m ) =  I ~ { T :  OSTS f, S,= m}ll 

so = 0 s, =se-, +x, f = 1,2,. . 
and a sequence of random quantities S, is such that 

(3) 

(4) 
where independent random quantities X, have the distribution 

P(X, = 1)= P(X, = -1) =$,  f = 1,2,. . . . ( 5 )  

h(f; m, n) = P ( m  = R , - S , ,  n = S , - M , ,  D , # 0 )  (6a )  

h(f; m, 0) = 0 m a 0 , f a O  (6b )  

f , ( f ;  m) = P(m = R, -S,, D, =0) (7a)  

fo ( f )=P(R ,=S , ,D ,=0 ,  v( f ,R, )=l )  fa  1, fo(0) =o (8) 

D, = { m :  O<m<R,,  u( f ,  m)= 1) (9) 

M, = inf(D,). (10) 

To prove (1) we consider the functions of integer f, m, n a 0 

m 2 0, n 2 1, f 2 0 

m a 1 , f a O  

f i ( f ;O)=P(R,=S, ,  D , = 0 , u ( t , R , ) > l )  tal ,f ,(O;0)=1 (76) 

where 

and in the case of D, # 0 
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From the symmetry of a simple random walk it follows that 

P(D: # 0) = P(D, # 0) 

D:=[m: L , < m  < O ,  v ( f ,  m ) =  1). 

(15) 

(16) 

where 

It is obvious that either D, = 0 or D: = 0, hence 
m m  

f ( f ) = P ( D , # 0 o r D : # 0 ) = 2  1 1 f Z ( f ; m , n )  1 2 0 .  (17) 
n=o m=o 

The system of equations ( l l ) ,  (12), (13), (17) allows us to calculatef(1) respectively. 
Now we consider the generating functions: 

m 



" 

F ( z )  = 2  E E Fz(z;  m, n ) .  
"=" m=n 

Condition (20d) which is necessary to choose the only solution fnllows from the 
simple property fl( f ;  m) = 0 at f < m. 

The system of equations (19)-(21) can be solved by standard methods of the finite 
difference calculus [3]. We show the main points of solution. First, we write the general 
solution of equation (190) in the form 

i;(z; m, n ) =  c,(z; m + n ) x n + c 2 ( z ;  m + n ) x - "  (23) 
where Cl(z; m ) ,  C,(z; m )  are arbitrary functions and 

Then condition (19b) gives 

C,(z; m )  = -C2(z; m )  m>O. 

Further, equation (19c) transforms into 

u(x; n - 1 )  
u ( x ;  n + 1) C,(z ;n)=C, (z ;n - l )  na2 

where 

u(x; n)=sinh[nln(x)] 

and condition (19d) lets us find 

Thus, we can express the function A(z;  m, n )  in terms of F d z ) :  
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To find the general solution of non-homogeneous equation (20a) we use the Green 
function 

G(z ;  k ;  m) = - t u b ;  m-k)l  
2u(x;  1) 

which is a solution of the equation 
( 2 / z ) G ( z ; k ; m ) = G ( z ; k ; m + l ) + G ( z ;  k;m-1)+6,,, 

and adding the general solution of homogeneous equation, we have 
m 

Fl(z;m)= 1 G(z; k ; m ) F 2 ( z ;  k-1,1)+C3(z)x"+C,(z)x-" 
k=2 

where m a  1 and C,(z), C,(z) are arbitrary functions. 
Finally, making use of (206)-(20d), ( 2 1 )  one can find that 

2 X-m u ( x ;  k - m ) u ( x ;  1) 
Fl(z; m) =- -- Fdz)  E z x - 1  k E m  u (x;  k + l ) u ( x ;  k )  

m a l  

" 

Taking the sum in equation (22) ,  we obtain 

Now we consider asymptotics at small positive E = 1 - z, E + 0: 
- 1 + x - h ( x )  - 6 

sinh(&) [ (T)] In tanh - -$In E 6 d k = -  

Taking the asymptotic off(  t )  at f + m in the form 

we have at a < 1 

At last, comparing two asymptotics (37) and (39) ,  we find Q = 2,a = 0, B = 1. 
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